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Tni� analysis of the kinetics of drug ab-

sorption, distribution, metabolism, and ex-
cretion gives rise to a great variety of more
or less complex mathematical models (17, 22,
23, 34, 35, 49). Many of these fall into the

general class of systems known as linear sys-
tems. This class of systems is important for
several reasons: 1) the property of linearity
can be verified or excluded experimentally

without reference to any particular kinetic
model; 2) in formulating a kinetic model, the

property of linearity can often be assumed
or ruled out on general theoretical physico-

chemical grounds, with no commitment to a

particular detailed structure for the kinetic

model; and 3) linear systems all share cer-

tam properties that make it possible to pre-

dict important aspects of their behavior

without detailed knowledge of their internal
kinetics.

A linear system is defined as one which

obeys the principle of superposition. This
principle may be stated as follows:

If �i is the system response to an input
�i, and � is the response to the input

E2, and a and $ are arbitrary coefficients,
then � + �2 is the response to the input
aEi + �9E2.

The great power and value of this principle

comes from the fact that it is meaningful

not only for inputs and responses that are

simple numbers, but also for those that are
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more complicated mathematical entities,

such as functions or sets. The “response” or
“output” � of a pharmacokinetic system,
for example, is typically a function of time
giving the drug concentration at some point

in the system (e.g., the plasma level). The

8um a� + � is then likewise a function of

time, formed by adding the functions �
and rz, after multiplying by a and �, re-

spectively. More generally, the output of a
pharmacokinetic system might be considered

to be a set of time-functions giving the drug
concentrations at several points (e.g., plasma,

cerebrospinal fluid, myocardial tissue, etc.).

In that case the sum � + �2 is likewise a

set of time-functions, formed by adding the
corresponding time-functions of � and �2

after multiplying by a and � respectively.

The possibilities for “input” are similar but
slightly more complicated, because in order

for us to state the principle of superposition
in the simple form above it is necessary

that every input uniquely determine the
response. To do this, the “input” must com-
prise not only the time-functions specifying

the injection rates at various points but also
the initial conditions, and in some cases the

past history of the system. Nevertheless, in
spite of this complexity of the input � we

can still form the sum aEi + j3� by adding

the corresponding components (injection
rates, initial conditions, etc.) of the two
inputs � and � after multiplying by a and �
respectively.

Readers long accustomed to intuitive ad-

dition in arithmetic and algebra may feel
some intuitive resistance to this broader

concept of “addition” of functions or sets of
numbers or functions. The cure, if the author

correctly remembers his own experience, is

to accept the fact that an intuitive “feel”
for this type of addition may not come at
once, and to be willing to accept these new
definitions of “addition” as purely formal

rules.

Two examples will illustrate these con-

cepts. Figure 1 shows simulated “plasma”

levels for a compartmental pharmacokinetic

model with three different inputs. Input A

I Gastrointestinal 1(1 �] 1(2

[� Tract Plasm�j-s.-

Fio. 1. Additivity of inputs and responses for a
linear model. Curves A, B, and C are computed

“plasma” levels for the compartmental model
shown. First-order rate const�nts K1 and K2 are

0.7 and 0.25, respectively. The input for curve C
was the sum of the inputs for curves A and B,

and curve C itself is the sum of curves A and B.
Curves were computed by numerical integration

by Euler’s method on the Dartmouth Time-
Sharing System. The figure has been redrawn from
the original computer-plotted curves. See text for
further explanation.

comprises 1) initial conditions of 2 units in
the “plasma” and 0 units in the “gastroin-

testinal tract,” together with 2) a constant
intravenous infusion during the first 3 time
units. Input B comprises 1) initial conditions

of 0 units in both compartments, and 2)
single doses introduced into the gastroin-
testinal tract at 1 and 4 time units. The
“sum” of these two inputs can be defined

as an input such that: a) the initial plasma
level is the sum of the two initial plasma

levels; b) the initial gastrointestinal tract
level is the sum of the two initial gastroin-
testinal levels; and c) the drug injections

and infusions given comprise all those given
in the two inputs being added. In the ex-
ample of figure 1, input C is the “sum” of
inputs A and B, i.e., it comprises 1) initial
conditions of 2 units in the plasma and 0

units in the gastrointestinal tract, together
with 2) a constant intravenous infusion

during the first 3 time units and single

oral doses at 1 and 4 time units. The com-
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puted responses to these inputs (i.e., the

computed “plasma” levels) are shown as
curves A, B, and C, respectively, in figure 1.
The principle of superposition is reflected in

the fact that at every point in time the
plasma level defined by curve C is exactly

equal to the sum of those defined by curves
A and B.

This definition of “addition” is expressed

literally in the computer program used to
draw the curves of figure 1 (fig. 2). In that
program the symbol A represents a pair of

numbers, namely the initial level A(1) in

the gastrointestinal tract and the initial
plasma level A(2) for the first run (curve A).

Similarly the letters B and C represent

pairs of initial values for the second and

third runs, respectively. Line 7 of the pro-
gram (fig. 2) defines the initial values for

the third run as the sums of the correspond-

ing initial values of the first two runs. The

functions FNA, FNB, and FNC specify the
various injections and infusions into the

two compartments; and in line 8 FNC is
defined as the sum of FNA and FNB.

A second example is illustrated in figure

3. The figure shows concentration profiles

within a plane sheet of homogeneous tissue,

resulting from diffusion of a substance ap-

plied to one or both surfaces. Curve A shows

the concentration profile resulting from the

5,
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FIG. 3. Additivity of inputs and outputs in a
diffusion system. Curves A, B, and C are com-

puted concentration profiles within a plane sheet
of homogeneous tissue with a diffusing substance

applied to one or both surfaces. The diffusion co-
efficient is 1. The input for curve C was the sum

of the inputs for curves A and B, and curve C
itself is equal to the sum of curves A and B. See

text for further details.

1 LII3RARY “PL.OTLIB***zTDI”. ‘FIGISUB”
2 LET MO - 100
3 DIN ZCl5O)sA(2)s9C2)aCC2)
4 LET AC2) - 2
S DE? PNACJ�T) (lSGNCA8SCJ��2)))*SGNCl�SGN(T3)).2/N0
6 DE? ?MB(J.T) #{149}�
7 NAT C #{149}A+B
� DE? FNC(JaT) #{149}FNA(JsT)+PNRCJ�T)
� CALL “AXES”$�() DRAW AXES AND HARK SCALES
10 CALL. “RUN”$lC),AC)aPNAaNO’ RUN WITH INITIAL COND. AC) $ INPUT F�1A
11 CALL. “RIJN”$Z().BC).PM8sNO’ RUM WITH INITIAL COND. 8C) & INPUT F’43
12 CALL ‘RLRI”tZC).CC).FNC.NO’ RUN WITH IN. CO�dD. AC)#{149}B() I INPUT FNA+PI�
13 END

FIG. 2. Computer program for drawing figure 1. The programming language is BASIC. Lines 1 to 3
identify subprogram libraries and set the integration step size and matrix dimensions. Model compart-

ments are numbered 1 (gastrointestinal tract) and 2 (plasma). Line 4 sets the initial “plasma” level at
2 units for input A; all other initial levels are automatically set at 0. Line 5 defines input function A
as a constant infusion into the “plasma” compartment (J = 2) during the first three time units. Line

6 defines input function B as two pulses (single doses) given into the “gastrointestinal tract” (.1 = 1)
at 1 and 4 time units, respectively. Lines 7 and S define the initial conditions and the input function for
run C as the sums of the initial conditions and input functions, respectively, of runs A and B. Lines 9

to 12 call subprograms to draw and scale the axes and to compute and plot the “plasma” levels for

each input in turn.
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application of a fixed concentration of 0.6
units to the left-hand surface for 0.11 time

units, with the right-hand surface exposed to
a solution containing none of the diffusing
substance. Curve B resulted from the ap-
plication of concentrations of 1.5 units to

the right-hand surface and 0 units to the
left-hand surface for 0.1 time units, followed

by a partial washing-out by exposure for
0.01 time units to solutions of 0 units’

concentration on both surfaces. Curve C

resulted from the application of both these

inputs, i.e., 0.6 units on the left and 1.5
units on the right for 0.1 time units, fol-
lowed by 0.6 units on the left and 0 units on

the right for 0.01 time units. The principle
of superposition is reflected in the fact that
at every depth within the tissue curve C is
exactly equal to the sum of curves A and B.

We note that although these particular
curves represent only a single point in time
(i.e., 0.11 time units after first applying

the diffusing substance to the surfaces),

the same relationships will hold at any fixed

point in time. In short, the output C equals
the sum of the outputs A and B at every

depth within the tissue and at every time.
As indicated in the above statement of

the principle of superposition, the inputs in
either of these examples could have been
multiplied by arbitrary numbers before being

combined. In addition, we could have con-
sidered diffusion in three-dimensional space,
rather than the one-dimensional diffusion

illustrated in figure 3; and in that case we
could show that the additivity of output
concentrations holds at every point in three-
dimensional space and time. However, the
simpler examples of figures 1 to 3 suffice to

illustrate the basic concepts of addition of
complicated and dissimilar inputs, addition
of outputs which are functions of time, and
addition of outputs which are functions of

time and space.
Many authors (11, 23, 26, 49) have im-

plicitly or explicitly recognized the distinc-

tion between linear and non-linear systems.

What are often referred to nowadays as

“dose-dependent” systems are in fact non-

linear systems. Concepts of linearity and

superposition have from time to time been
invoked in pharmacokinetic discussions (25,
32,50, 53). However, in most of the pharma-

cokinetic literature the concept of linearity
has been related to only one specific class of
pharmacokinetic models, namely multicom-
partment models with constant transfer
rate coefficients, uniform concentrations

within compartments and instantaneous
transfers between compartments. Further-
more, there has been little exploitation of the

fact that the principle of superposition ap-
plies to an immense variety of more or less

complicated inputs (i.e., schedules of dosage
and routes of administration).

In this review, we shall try to emphasize
the great generality of the concepts of
linearity and superposition. We shall stress

the fact that these concepts apply not only
to conventional multicompartment systems,

but also to multicompartment systems with
time-dependent rate coefficients, intercom-

partmental diffusion, incomplete mixing in

compartments, or time delays (single-valued
or statistically-distributed) in absorption or
transport, and also to so-called “discriminat-
ing systems” (34), where molecules leave a
compartment at a rate dependent on the
length of time they have resided in it. Be-
cause of this generality, these concepts can

often be applied with confidence to actual
pharmacokinetic systems about which little

of a specific nature is known. We shall also
stress the fact that these concepts apply to
inputs of great variety and complexity, and

that therefore these concepts have poten-
tially wide practical application, not only for
predicting responses to multiples of a given

dose, but also for analyzing the results of
combining different schedules of dosage and
multiple routes of administration.

Theory

Pharmacokinetics deals with the time-

course of drug concentrations at various
points in the body. A pharmacokinetic sys-

tem therefore consists of a set of anatomical

points, together with the drug concentra-



‘Since animals move, we must consider the possibility that such a region is moved or deformed, and

we must assume the anatomical points of the region defined in such a way that they retain their identity
through all such motions or deformations. In general, this means that the points are not necessarily
defined by fixed coordinates in a rigid spatial frame of reference.
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tions at those points. If within a certain

anatomical region the drug concentration is

everywhere the same, then the points of

that region can be lumped together as a
“compartment.” In that case we can speak

of the quantity of drug in the compartment,

as well as the concentration. Except for its
containing a finite quantity of drug, a com-

partment can be treated in pharmacokinetic
analysis as equivalent to a single anatomical

point. Compartments which behave the same
pharmacokinetically (i.e., their concentra-
tions are always the same) can be lumped

together as a single compartment or “point”

for purposes of pharmacokinetic analysis,
even if in reality they are anatomically

separate. Either the concentration or the
quantity of drug in a compartment can be

used to characterize it pharmacokinetically;
and both are single-valued functions of time.
Drug can be injected into a compartment

from outside the system, and the rate of
injection is likewise a single-valued func-
tion of time.

If the drug concentration within a given

anatomical region is non-uniform, and if the
region cannot be subdivided into compart-

ments with internally uniform concentra-

tions, then the region may be thought of
as comprising infinitely many anatomical

points, i.e., the points of physical space.5
We can speak of the quantity of drug within
such a region, but this quantity gives no

information about drug distribution within

the region, and by itself it is therefore in-
sufficient to characterize the region pharma-

cokinetically. We cannot speak of the quan-
tity of drug at a single point, except as an
infinitesimal. The drug concentration in such

a region is a function of both time and
location within the region, i.e., a “time-space

function.” We can speak of the overall

injection rate into such a region, but this

parameter is pharmacokinetically inade-

quate because it does not specify the dis-

tribution of the injected substance within

the region. We cannot speak of the in-
jection rate into a single point, except as

an infinitesimal. We can, however, con-

ceive of injection as a flux, possibly of

non-uniform density, into the region through

some boundary surface. The injection rate
for such a region is therefore a function of
time and location on the boundary surface,
i.e., a time-space function.

We shall take the time 0 as the starting

point for observing the output of a pharma-
cokinetic system. The output will then be

defined as a set of time-functions or time-

space functions on the interval 0 � t < �

giving the drug quantities or concentrations

in one or more compartments or at one or
more anatomical points in the system sub-

sequent to time t = 0. The input to the
system comprises one or more of the fol-
lowing elements:

1) Initial conditions: A set of drug levels

at t = 0, either single values or functions
over regions of space;

�) Boundary conditions: A set of condi-

tions on the drug levels at the boundaries of

spatial regions at times after t 0;
3) Injection rates: A set of time-functions

or time-space functions on the interval

0 � t < oo giving the rates of injection
into the several regions;

4) Applied concentrations: A set of time-

functions, or time-space functions giving

drug levels maintained or enforced in cer-
tain compartments; and

5) Past history: A set of time-functions or

time-space functions on the interval - � <

t � 0 giving drug levels, boundary condi-
tions, applied concentrations and injection

rates prior to time t = 0.

Our fundamental assumption here is that
of a fixed anatomical frame of reference.

That is, all those anatomical points of the

system which are not lumped into compart-

ments retain their identity at all times; and



stated above. In order for the principle to be

meaningful, it is only necessary that the

inputs � be elements of a linear space, and

that the outputs � also be elements of a

linear space, not necessarily the same one

as the inputs. This means that the principle

of superposition can be meaningfully stated
in terms of inputs and outputs that are num-

bers, time-functions, time-space functions,

discontinuous functions, sets of numbers,

sets of functions, mixed sets containing

both numbers and functions, etc. Since, as we

have shown above, a wide variety of phar-

macokinetic inputs and outputs are elements

of linear spaces, the principle of superposi-

tion can be applied to a correspondingly

wide range of pharmacokinetic systems. This

we shall now illustrate with some specific

examples.

The simplest case is a one-compartment

system with drug administered by injec-

tion, which obeys the equation

�=-ky+x. (1)

Here x and y are functions of time on the
interval 0 � I < �, representing respec-

tively the injection rate and the quantity

of drug in the system; and k is a first-order

rate coefficient, which can be either constant

or varying with time. (If k varies with time,

the product ky of the two time-functions k

and y is defined in the usual way as a time-

function whose value at any time is equal

to the product of the values of k and y at

that same time.) The input � to this system

comprises the injection rate x and the initial

value y(O), and may be written as

= {x, y(O)}. Each such input uniquely

determines an output � (= y). Addition of

two inputs �i and �, is defined as follows, for

any numbers a and $:

� + �

= a{xi, yi(0)� + f3{x2, y2(0)} 2

= {[aXi + �X2], [ayi(O) + $y2(O)]}.
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any anatomical points that are lumped into

compartments stay put, i.e., compartments

do not appear or disappear or change their

boundaries. Under this assumption both the
inputs and the outputs, as defined here, are

elements of so-called linear spaces. “Linear

space” is the somewhat misleading name
given to a mathematical abstraction which

may bear little resemblance to a “space” in

the usual sense. A linear space is in fact merely

a set of things with the special property that

they can be added together or multiplied

by a number and the resulting sum or prod-

uct will also be a member of the same set.4

An example of a linear space is the set of
all single-valued functions of time on the

interval ti � t � t2. The sum of any two
single-valued functions of time on this in-

terval is itself a single-valued function of
time on the same interval, and is itself

therefore a member of the set. Similarly,
multiplication of any function by a number

gives another function on the same interval.

Another example of a linear space is the set

of all functions of time and space on some
time interval and space region. These can

be added together or multiplied by a num-

ber to give new functions on the same time

interval and space region. Still another ex-
ample is the set of all pairs of numbers

!a, b}. The sum of two such pairs {ai, b11
and {a2, b,J can be defined as the pair

1(ai + a2), (b1 + b2)}; and the product of
the pair {a, b} by the number a can be de-

fined as the pair faa, ab}. More generally,

sets of n elements of linear spaces may them-

selves form a linear space, if the elements

within a set can be arranged in some sort of

order (e.g., if they are elements of a vector

or a matrix5). In that case, the i-th element

of a set can be multiplied by a fixed number,

or added to the i-th element of a second set,

to give the i-th element of a new set, for

i = 1 ton.

The concept of a linear space forms the

basis for the most general interpretation of

the principle of superposition, as it has been

For a more formal definition of a linear space, see Birkhoff and MacLane (3), p. 152, or Collatz (6)
pp. 1-2.

See the APPENDIX for an explanation of these terms, if necessary.
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it is important to remember that, whereas

an ordinary equation defines a number as its
solution, a differential equation like equa-

tion (1) defines not a number but a function.

It is the entire function y, and not any single

value, which must be thought of as the

solution to equation (1). Accordingly, any

given input function x�, together with an

initial condition, defines a certain output

function yi. Similarly, an input x2 with an

initial condition defines an output function

1/2. The functions y� and y� satisfy the
equations

= -ky1 + x1

= -ky2 + x2,

respectively. In the first case, the output �i

is the function 1/i , and the input � comprises

the function x� and the initial condition

y�(O), i.e., �i = {x�, yi(O)}. Similarly, in the

second case, � = 1/2 and E� = {X2, y2(0)}.

If we now multiply equations (3a) and

(3b) by a and 19 respectively, and then add

them together, we obtain

d(ayi+ 19Y2) = -k(ayi + 191/2)

+ (axi + fix2).

This is a differential equation defining a

new function, namely the function ayi +

19Y2. In terms of this function, and the
new input function ax� + fix2, equation (4)
is of exactly the same form as equation (1).

It states, therefore, that the function ay� +

is a solution of equation (1), with the
injection rate x = axi + fix2. Moreover, the

initial value of the function ayi + 19y2 is
obviously ayi(0) + 19y2(O). Therefore ay� +

191/2 is the solution or output associated with
the input { [axi + 19X2], [ayi(0) + fly2(0)]�.

This input is aEi + fl�, according to equa-

tion (2). Therefore, for the system defined

by equation (1), � + fl�2 (i.e., ayi +

fly�) is the output for the input aEi +

fl�; and therefore the system obeys the

principle of superposition.

When we turn to multicompartment sys-

tems, we open the door to infinite mathe-
matical complexities; but all these can be
made to disappear by using a completely

general analysis based on matrix algebra
(see APPENDIX). A linear multicompartment

system (that is, one in which all unidirec-
tional compartmental effluxes obey first-
order kinetics) obeys equation (1), provided

y and x are interpreted as vector functions
of time (t � 0) giving respectively the drug

quantities in, and the injection rates into,
the various compartments. Then k is a matrix

of rate coefficients (or a matrix function of
time, if the rate coefficients vary with time),
and y(O) is the vector of initial compartment
contents or concentrations. With these def-

(3b) initions, the argument of equations (3, 4)
can be followed through again to show that
linear multicompartment systems obey the

principle of superposition.
Sometimes a drug, instead of being in-

jected into the system, is maintained in a

controlled concentration in a source com-
partment, from which it passes into the

system by a first-order process. This is the

situation, for example, when an inhalation
anesthetic is administered in a controlled

concentration in the inspired gas mixture.
In such cases, x is a drug concentration (or a
vector of drug concentrations) in the com-

partment (or compartments) where the drug
concentration is controlled, and the system

obeys an equation of the form

�=-ky+bx, (5)

where b is a first-order rate coefficient or a

vector or matrix of first-order rate co-

efficients. Here again, an argument analogous
to that of equations (3, 4) shows that these
systems obey the principle of superposition.

A system with diffusion may be approxi-

mated by a linear multicompartment system
with a very large number of very small com-

partments, the approximation being made to
any desired degree of accuracy by increas-
ing the number and decreasing the size of

compartments. Alternatively, one may take
the drug concentration y as a function on



6 Although we refer to the functions � and �‘ [equations (9-12)] as statistical density functions, they

differ from ordinary statistical density functions in that their integrals from 0 to co may be less than 1,

i.e., there may be losses in transmission, or there may be permanent retention of part of the input to a

discriminating system. The function �z has the structure of a renewal density function (52) based on a

single-passage recirculation time density function whose integral from 0 to �0 may be less than 1 because
of losses from the recirculation pathway.
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three-dimensional space and time, and em-

ploy the methods of vector analysis (7, 28).

For generality, we assume the diffusion
medium to be anisotropic; then, for rectan-

gular coordinates � s�, and S�,

= D� -�-� + D� + D,, A
dt 08i2 0822

= div(Dgrady),

i3y
082 083

+ (D,1 + D15) t3y (6)
08� 08,

+ (D� + D21) O’y
0s� 082

where the A, are the elements of the matrix

of components of the tensor D. For an
isotropic medium, D11 = D� = D,,, the

other D�, are zero, and the tensor D is

simply the diffusion coefficient.

With diffusion systems there is usually no

input other than the initial and boundary

conditions. The simplest case is where the
boundary conditions y(B) simply specify

the value of y at all points and at all times

on the boundary B. Since

a div (D grad Yi) + fi div (D grad Y2) (7)

= div (D grad [ayi + 19y2]),

we can show by adding equations, as we

have done to obtain equation (4) from

equations (3a) and (3b), that if y� and Y2

are solutions to equation (6) with initial

and boundary conditions {yi(0), y1(B)} and

{y2(O), y,(B)}, respectively, then ayi + 191/2

is the solution with initial and boundary
conditions {[ay,(O) + 191/2(0)], [ay,(B) +

19y2(B)JJ; i.e., the principle of superposition

holds.

A more complicated case would be where

the boundary conditions are of the form

[D. grad y]a = k[y(B) - x(B)], (8)

where ED. grad Y]B is the flux component at

the boundary in a direction normal to the

boundary surface, k is the permeability

coefficient of the boundary surface, and
y(B) and x(B) are the concentrations just in-

side and just outside the boundary surface,
respectively. The permeability coefficient k

may differ at different points on the bound-

ary and at different times, as may the exter-

nal concentration x(B) and the tensor D..
Equation (8) represents a boundary surface

of limited permeability; and the special case

where k 0 represents a reflecting (im-

penetrable) boundary. The input to the
system comprises the initial conditions y(O)
and the external concentration x (of which

only the boundary function x(B) actually

contributes input). It is easily verified, then,

that if y, and 1/2 satisfy equations (6) and

(8) with inputs {yi(O), x,} and {y2(O), x,J

respectively then ay, + fly� is the function

which satisfies equations (6) and (8) with

the input {[ay,(0) + 191/2(0)], [axi + flx2]!.

A system with delayed transport, such as

transport in the circulation (29, 43, 52)

obeys an equation of the form

= -ky +f k�,(t - O)y(O)dO

+ 42(t - O)x(O) dO,

(9)

where y is the drug level at some point of

observation, x is the rate of injection (at

some other point in the system), y(O) and
x(O) are respectively the values of these

functions at the time 0, 4� is a statistical

density function6 of transit times from the

site of injection to the point of observation,

�, is the sum of statistical density functions
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of transit times for one, two, etc., recircula-

tions, and 4�,(t - 0)dO and 4�(t - 0)dO are

respectively the statistical frequencies of

recirculation times and transit times be-

tween t - 0 and #{163}- 0 + do.

We have chosen to consider as the “re-

sponse” of a pharmacokinetic system only

that portion of the output function where

t � 0. We therefore partition the function y

in equation (9) into a part prior to t = 0

(the “past history”), which will be denoted

by h, and a part on the interval t � 0,

to which we will now restrict the notation y.

We make a corresponding partition of the

first integral in equation (9) into an in-

tegral from - oo to 0 and an integral from

0 to t, and obtain

= -ky + f k4�,(t - 0)y(0) do

+ kcb,(t - o)h(0) do

+ f ��(t - 0)x(0) do,

where y is a function of time on the interval

O � t <cx. The input � then comprises the

“past history” h on the interval - <

t < 0, the function x on the interval - 00 <

t < 00, and the initial condition y(0). We

define addition of such inputs as follows,

for any numbers a and 19:

a�i + fl�
= a{h, , x, , y,(O)} + fl{h2 , x, y2(0)}

= {[ahi + fl/i2],[axi + flx2],

[ay,(O) + 19y2(0)ll.

it is now easily verified that if 1/i and Y2 are

the outputs for the inputs � and E2, re-

spectively, then ay, + fly2 is the output

for � + l3�2.

A “discriminating system” obeys an equa-

tion of the form

= x - f �&(t - 0)x(0) do, (12)

where �& is the statistical density function6

of survival times. Here the input is {x, y(0)J;

and the principle of superposition is easily

verified by the same general method used

in the preceding cases.

Systems combining two or more of the

foregoing features, for example multicom-

partment systems with statistically dis-

tributed intercompartmental delay times, or

multicompartment systems with intracom-

partment diffusion gradients due to in-

complete mixing, can also be shown to obey

the principle of superposition. Suppose we

have two linear systems, each of whose

outputs forms part of the input to the other.

Let y and y’ be the respective outputs, and

let {y’, x} and {y, x’} be the respective in-

puts. (In the present context, x and x’ are

assumed to comprise all inputs other than

y and y’, including initial and boundary
conditions, past history, etc.) Assuming that

the overall system is physically realizable

and determinate, there is a unique solu-

(10) tion {y, y’} for any given external input {x,

x’}. Let �y’, y,’} and 1Y2, Y2’} be the solu-
tions for the external inputs x1, x,’}

and {x2, x2’}, respectively. Then from the

linearity of the first subsystem it follows

that ay, + fly2 is the solution for the input

{[ay,’ + 191/2’], [ax, + flx�]J, for any num-

bers a and (3. Similarly, for the second

subsystem, ay,’ + fly�’ is the solution for

the input {[ay, + fly2], [ax,’ + flx2’]}. There-

fore for the overall system, {[ay, + (31/2],

[ay,’ + fly2’]} is the output for the external

input {[aX, + 19x2], [ax,’ + flx2’]}. Since any
such combination of two linear systems is

(11) thus linear, it follows that any such com-

bination of any number of linear systems

is linear.

The concept of linearity actually implies

two distinct properties, namely homogeneity

and additivity (ci. 56, pp. 132-137). A
homogeneous system obeys the principle

that if � is the output for the input � then,

for any number a, a� is the output for the

input aE; but it does not necessarily obey
the superposition principle as regards addi-

tion of inputs. Of course, if the inputs are

simple numbers, there is no distinction be-

tween inputting the sum of two numbers
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(e.g., 1.32 + 2.64 = 3.96) and inputting the

product of one of them by an appropriate

a (e.g., 1.32 X 3 = 3.96). This is not so,

however, for the more general types of input

we are considering, i.e., elements of linear

spaces. For example, the sum of the pairs

(1, 2) and (1, 0) is the pair (2, 2), which can-

not be obtained by multiplying either of the

original two pairs by any number. If a

system is such that when inputs are added

the outputs add, it is said to have the

property of additivity. For all practical

purposes, a physical system which is addi-

tive is also homogeneous and hence linear;

but a system which is homogeneous may not

be additive.

An artificial example of a homogeneous

but non-linear system is the system

= -k,, Zi + k12 �/�j + x1 (13)

(14)

Multiplication by a shows that if z (the

column vector of z1 and z2) is the solution

for {x, z(0)} then az is the solution for

{ax, az(0)J. On the other hand, if z and z’

are solutions for {x, z(0)J and {x’, z’(O)},

respectively, and we multiply by numbers

a and 19 and add the differential equations

as we did with equations (3a) and (3b) to

obtain equation (4), we find that az + flz’

is not a solution for {ax + fix’, az(O) +

flz’(O) }.

In point of fact, it seems rather unlikely

that the usual pharmacokinetic mechanisms

will ever give rise to a system which is

homogeneous but non-linear; however, the

possibility may have to be considered in
some cases.

It should be noted that, while in some
respects we have been very general in our

description of pharmacokinetic inputs and

outputs, in other respects we have laid down

some very specific requirements. A pharma-

cokinetic input or output must be defined

for a fixed set of anatomical points and a

fixed set of points in time, in order for us to

use it in the principle of superposition. There-

fore, we can use as the output, for example,

the plasma level at some fixed time t; but

we cannot use the peak plasma level, be-

cause this may occur at different times with

different routes and schedules of administra-

tion. In a linear pharmacokinetic system the

peak drug level at any point will be directly

proportional to the dose, as long as the

route and schedule of administration are

unchanged, i.e., as long as the input is un-

changed except for multiplication by a

dosage factor a. However, since peak levels

for different routes and schedules of ad-

ministration will not necessarily coincide in

time, the peak level resulting from the sum

of two inputs will not necessarily equal the

sum of the peak levels resulting from those

inputs applied separately, but may be less.

If they were to be viewed as output, then,

peak drug levels in a linear system might

be said to have the property of homogeneity

but not that of additivity.

Discussion

1. Concept of Linearity in Analysis of

Pharmacokinetic Data

In the analysis of data on pharmacokinetic

systems, the principle of superposition pro-

vides a simple test for detecting the presence

of non-linear processes, i.e., processes which

do not obey first-order kinetics. Examples

of such processes are metabolic transfor-

mations with Michaelis-Menten kinetics,

active renal tubular transport with a char-

acteristic transport maximum, and the

binding of drug to saturable sites on plasma

proteins or in tissues. In addition, there are

processes whose rates are affected by

pharmacological actions of the drug itself.

These would include processes such as

metabolism of the drug by an enzyme which

is induced by the drug, or distribution of

the drug by tissue blood flows which are af-

fected by the drug. On the other hand, time-

dependent processes (i.e., processes in which

the rate coefficients or other parameters are

functions of time) do not introduce non-

linearity, though they may produce pharma-
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cokinetic behavior that cannot be simulated

by any multicompartment model with con-

stant rate coefficients.

In some respects, linear and non-linear

systems may closely resemble one another.

A few years ago, Wagner (48) showed that

a linear four-compartment model could ac-
count for a period of apparent zero-order

elimination kinetics, such as that which

several investigators had reported for sali-
cylates. Responding to Wagner’s suggestion,

however, Levy (25) and Cummings and

Martin (9) cited the evidence that the rate

of salicylate elimination does not increase

in proportion to the dose, or in proportion

to the total quantity present in the body,

and that the fraction of the dose which is

eliminated as salicyluric acid is less after

large doses than after small doses. We draw

attention now to the fact that these argu-

ments indicate failure of the principle of

superposition, and are therefore absolutely

conclusive in ruling out not only Wagner’s

particular multicompartment model but

also all other linear models, including those

that are not conventional multicompart-

ment models at all.

To be more explicit, let y be a vector

function of time, giving the quantities of

drug in all compartments (including the

urine) as functions of time. The input-a

single dose at time #{163}= 0-is most conve-

niently represented by an initial condition

vector y(0), whose components are all zero

except for the one corresponding to the

compartment where the drug is administered

(the gastrointestinal tract). There is no

other input. Increasing the dose by a factor

a corresponds to multiplying the input by a.

According to the principle of superposition,

the output would then be changed from y

to ay. It follows from this that the quantity

of drug which has been eliminated (i.e., is

present in the urine compartment) at any

time t would be directly proportional to the

dose, and hence that the rate of elimination

at any time would be directly proportional

to the dose. Moreover, the quantity elimi-

nated in any particular form (e.g., salicyluric

acid) would be proportional to the dose, so

that the proportion eliminated in any par-

ticular form-that is, the ratio of the quan-

tity eliminated in that form to the sum of

the quantities eliminated in all forms-

would be dose-independent. Since, as Levy

and Cummings and Martin pointed out,

these rules are not followed by salicylates,

all linear pharmacokinetic models for saucy-

lates are ruled out.

Nevertheless, Wagner had a valid point,

namely that a linear model can sometimes

be made to simulate the time-course of be-

havior of a non-linear system. The same

point was recently demonstrated again by

DiSanto and Wagner (12). It is therefore of

considerable importance to determine the
pharmacokinetic behavior at different doses,

so as to test the principle of superposition.

To do this, it is not necessary to go through

the tedious procedure carried out by DiSanto

and Wagner, fitting a linear model to the

data at each dose to determine whether the

parameters must be changed with the dose;

nor is it necessary to determine the area

under the plasma concentration-time curve

(49, pp. 242-246), or the apparent biolog-

ical half-life, as a function of the dose. One

need only plot out graphically the observed

plasma levels (or cumulative urinary excre-

tion), divided by the dose given (cf. 50,

p. 20). If the system is linear, the curves for

different doses will superimpose. This simple

procedure allows one to detect failure of

superposition, and hence non-linearity, even
before taking the first steps toward formu-
lating a detailed pharmacokinetic model.

Figure 4 illustrates a simple superposition

plot of curves computed for the non-linear

model of DiSanto and Wagner (12). The

failure of superposition is obvious without

further analysis. Data can also be tested for

linearity by an alternative plotting method,

used by KrUger-Thiemer (23). This method
is illustrated in figure 5, where the logarithm

of the plasma level is plotted against time

for a non-linear model of salicylate kinetics

(27) and for a linear model. In this type of

plot, a change of dose shifts the response
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curve up or down in a parallel fashion, if

the system is linear. This type of plot gives

a good display of the data for linear sys-

tems, but it is difficult to judge visually

00

g
a
C
00
0
C
0C)

a
E
U)
a

a.

Time, hr.

Fia. 4. Superposition plot for the non-linear
pharmacokinetic model of DiSanto and Wagner
(12). The model has the equation

or

[C + AC/(B + C)] = -KC,

�2 KC(B+C)’
dt AB+(B+C)”

where C is the plasma concentration, and A, B,

and K are parameters having the values 10, 1,
and 2.75, respectively. The curves in this figure
(and in figs. 5 and 7) were computed by numerical
integration by a fourth-order Runge-Kutta
method on the Dartmouth Time-Sharing System.
On the left-hand side of the figure, the curves lie
in order of dose, that for the highest dose being at
the top. The dose D is related to the initial plasma
concentration C0 as follows:

D = V[C0 + AC0/(B + Co)],

where V (= 0.5) is the volume of distribution.

Doses for the seven curves were 1.917, 3.00, 4.33,
6.67, 9.55, 14.76, and 29.90.

whether the parallelism is exact, and one

cannot tell immediately whether the vertical

shifts are the right distance for superposi-

tion. For the detection of non-linearity,

therefore, one should choose a plotting

method, such as that of figure 4, which

makes the data at different doses super-

impose for linear systems. Wagner (50, p. 20)

has already suggested the simple superposi-

tion plot as a test for linearity; but he has

validated it only in terms of a conventional

two-compartment open model. Here we

FIG. 5. Comparison of linear and non-linear

models for salicylate excretion. Dashed curves
were computed by numerical integration of equa-

tions (4-14) of Levy et at. (27). These equations
describe a non-linear model with two saturable
metabolic transformations. Doses (from bottom)
were 300, 600, 1200, and 2400 mg. Solid curves were
computed for corresponding doses in a linear model
with three compartments (gastrointestinal tract,
plasma, and urine), with parameter values ad-

justed to give a good fit to the model of Levy
et at. at a dose of 600mg (absorption rate constant
4.2; excretion rate constant 0.13). At the dose of
600mg the fit is quite good for 8 hr (though not for
much longer); but changes in dose cause the two
models to diverge. The curve for the linear model

is shifted up or down in parallel fashion, whereas

for the non-linear model the shifts are non-
parallel.
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stress that the concept of linearity is much

broader, and can apply to systems with

time-dependent rate coefficients, time-delays,

diffusion gradients, and an unrestricted

number and arrangement of compartments.

Figure 6 shows an artificial model contain-

ing a time-dependent mc�tabolic transforma-

tion process and an “enterohepatic circu-

lation” with a fixed time-delay; and figure 7

shows computed curves of plasma levels in

this system in response to oral doses. The

system can be seen to obey the principle of

superposition. In real life, the kinetics of

enterohepatic circulation are probably some-
what more complicated than a simple

fixed time delay. Jusko and Levy (20) have

suggested that the double peak in urinary

excretion rates of riboflavin reflects entero-

hepatic circulation, with accumulation of

the drug in the gallbladder over a period of

time, abrupt emptying of the gallbladder at

mealtime, and an ensuing period of rapid

absorption of the riboflavin thus liberated

into the gastrointestinal tract. Even such a

complicated system as this, however, could

be effectively tested for linearity by a simple

superposition plot, provided the schedules of

drug administration were carefully con-

trolled in relation to a fixed schedule of

meals.

Figures 8 to 10 illustrate superposition

plots applied to real pharmacokinetic data

taken from the literature. Figure 8 shows

data on plasma levels of d-tubocurarine in

the dog after each of two intravenous doses

(5). With the possible exception of two

points we could conclude that these data
show superposition and that the pharmaco-

kinetics of d-tubocurarine are linear. How-

ever, the range of doses is rather narrow,

and perhaps a wider range of doses would

turn up more definite departures from super-

position. Figure 9 shows that in fact the

pharmacokinetics of d-tubocurarine are not

strictly linear, because the renal levels at-

tained with different doses do not satisfy the

principle of superposition. This effect is

apparently too small to affect the plasma

levels noticeably. (It should be noted that

the investigators who did this work did not

overlook or fail to appreciate this finding,

although they did not do superposition

plots.)

Figure 10 shows a superposition plot of

data on three intravenous doses of bishy-

droxycoumarin in man (30). From it one

can see immediately that (as has long been

known) the rate of elimination does not

increase in proportion to the dose or the

plasma level. One can also see that with

increasing dose there is a slight increase in

the early apparent volume of distribution

(i.e., a downward displacement of the

curve of plasma concentration/dose). This

would suggest that binding to saturable

sites on plasma protein may be affecting the

kinetics; but in these experiments the

larger doses were infused over a longer

3.Biliary

Tract J [�Tissue

Fio. 6. Schematic diagram of an artificial pharmacokinetic model containing a time-dependent
metabolic process and an “enterohepatic circulation” with a fixed time-delay. Parameter values were

as follows: ic,, = 4 hr’, k,, = 0.5 hr’, i.�t = 0.5 h.r, k4, = 0.5 hr�, k,4 = 1 hr’, k,, = 0.02 hr’, ice,

0.2 + 0.002t’ hr� (t = time in hr), km = 0.3 hr�, plasma + extracellular fluid volume 0.2 liter/kg body
weight.
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time period (up to 30 mm), and this may

account for some of the discrepancy. The

investigators here analyzed these data in

terms of a three-compartment model, and

found that just one of the several parameters

changed consistently with the dose. The

attempt to thus localize the non-linearity is

certainly worth while; but the conclusion is

necessarily subject to whatever doubts we

may have about the correctness of the

three-compartment model itself; and the

correctness of a pharmacokinetic model is
hard to be sure of when only observations

on a single compartment are available (35,
54). On the other hand, the dose-dependency

of the elimination rate and (possibly) the

apparent volume of distribution are im-

portant empirical facts about bishydroxy-

coumarin that do not depend upon any

particular compartmental model; and these

facts are easily brought out by a superposi-

tion plot.

The test of simply increasing or decreas-

ing the dose is of course a test of homoge-

neity rather than linearity. As pointed out

above, this is probably sufficient proof of

linearity for most pharmacokinetic systems;

but in some cases it may be desirable to

test further for additivity. This might be

done by using either multiple dosage sched-

Time, hr.

FIG. 7. Computed responses (plasma level) of the model shown in figure 6. Curves 1, 2, and 3 were
computed for doses of 8,32, and 128 pmol/kg, respectively. On the logarithmic ordinate scale these curves
are parallel and shifted by a distance exactly equal to the logarithm of 4 (the ratio of the doses). If
the computed levels for each curve were divided by the dose, these three curves would superimpose.
Curves 2a, 2b, and 2c were computed to illustrate the roles played by each of the special features of

the model, by deleting each feature in turn. For curve 2a, the “enterohepatic circulation” was deleted.

For curve 2b, the tissue compartment (no. 4) was deleted. For curve 2c, the time-dependent metabolic
transformation was deleted.



travenous and intramuscular doses, given

first separately and then together. To test

superposition with different dosage sched-

ules, one might study in the same way the

ules or multiple routes of administration.

To explore superposition with different

routes of administration, for example, one
might study the pharmacokinetics of in-
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FIG. 9. Superposition plot of renal concentrations of d-tubocurarine in the dog after each of two
intravenous doses [data of Cohen et at. (5)]. 0,0.3 mg/kg;�, 1.0 mg/kg.
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FIG. 8. Superposition plot of plasma concentrations of d-tubocurarine in the dog after each of two

intravenous doses [data of Cohen et at. (5)]. 0,0.3 mg/kg;�, 1.0 mg/kg.
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Fio. 10. Superposition plot of plasma bishydroxycoumarin concentrations (mg/liter) in man after
each of three intravenous doses [data of Nagashima et at. (30)]. S 150 mg; �, 286 mg; A, 600 mg.

Necessary and sufficient conditions for such asymptotic behavior, which might be termed “pharma-
cokinetic stability,” have been elucidated for linear multicompartment systems (13, 45) but not for all
possible types of pharmacokinetic system.
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effect of combining single intravenous doses

with constant intravenous infusions, or the
effects of a series of doses spaced in time, as

compared to the effects of a single dose.
In this last type of study, one must be
careful not to be led astray by temporal

variations in the pharmacokinetic param-

eters. If the pharmacokinetics are not the
same at noon as at 8 A.M., for example,

then one must compare the effect of giving

both an 8 A.M. and a noon dose with the

sum of the effects of the 8 A.M. and noon
doses given separately, and not with the

sum of two 8 A.M. responses staggered in

time.

�. Application of the Concept of Linearity in

Theoretical Studies

a. Drug Accumulation on Continuous In-

fusion or Repeated Dosage. The principles of

drug accumulation on continuous infusion

or repeated dosage have been discussed for

one-compartment systems by many authors

(14, 36, 44, 55); and they have also been

extended to more general types of multi-

compartment system (37, 51), for which

the only assumptions are that the first-order
rate coefficients are constant and that all

elimination takes place directly from the

“central” compartment. Some of these prin-

ciples of drug accumulation, however, can

easily be shown to hold for all linear systems,

including those with time-delays, time-

varying rate coefficients, and elimination

from peripheral compartments. For ex-

ample, since multiplication of the input by a

factor a multiplies the output by the same

factor, it follows that if the drug level tends

asymptotically to a fixed level with constant

drug infusion7 then that asymptotic level is

directly proportional to the infusion rate.

Similarly, if asymptotic maximum, mini-
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$ To form this sum one theoretically needs to know the response to a single dose out to time t -� �.

In practice this will require extrapolation from data obtained over a finite time period, and this extrap-

olation may be a source of error. (cf. section 4 below).
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mum and mean levels are attained on pro-

longed repetition of the same dose, then

these levels are directly proportional to the

dose. The same holds for a repeated pattern

of doses, e.g., a daily pattern consisting of

oral doses at 8 A.M., 12 noon, 4 P.M. and
8 P.M.: if asymptotic maximum, minimum

and mean levels are attained, they will be
directly proportional to the dose. The dosage

pattern may be even more complicated,

involving two or more different doses, drug

preparations or routes of administration. To

concoct an elaborate example, suppose a

subject is taking at 8 A.M. a 10-mg oral

dose of a standard preparation and a 40-mg

oral dose of a sustained-release preparation,

then at 4 P.M. another 40 mg of the sus-

tained-release preparation, and at 8 A.M.,

12 noon, 4 P.M. and 8 P.M. a metered dose of

2 mg by inhalation from a nebulizer. If all

doses in such a regimen are multiplied by

some common factor a, without changing

the routes or schedule of administration,

then in the resulting asymptotic daily

pattern of plasma and tissue concentrations

the concentrations will all be multiplied by

the factor a.

These conclusions hold for all linear

systems. If, in addition to being linear, a

system is “time-invariant” (i.e., it contains

no parameters which depend directly upon

the time t), or if all time-dependent parame-

ters are periodic with the same period, then

additional generalizations can be made. First

we observe that, for any linear system, if a

dose is given repeatedly at an interval r, the

cumulative response during the interval from

the n-th to the (n + 1)-th repetition is equal
to the sum of the first segment of length r of

the response to the n-th dose, plus the second

segment of length r of the response to the

(n - 1)-th dose, etc. (cf. fig. 11). If now the

system contains no time-dependent param-

eters, or if all time-dependent parameters

vary periodically with the same period as

the dosage cycle, then the responses to all

FIG. 11. Repetitive dosage: The cumulative

response as the summation of segments of indi-

vidual responses. Curves D1, D2, and D3 show the
responses to a single dose given at times 0, 1 or
2, respectively. Curve C shows the cumulative
response to all three doses, assuming the system
is linear. Consider the curves D1, D2, D3, and C
to be divided into segments 1 time unit in dura-
tion.Then the segment of the cumulative response
(curve C) after the third dose is the sum of the
first segment of curve D3, plus the second segment
of curve D2, plus the third segment of curve D1.
In this particular case, the responses D1, D2,

and D3 are identical except for a time-shift; and
therefore the segment of the cumulative response
after the third dose can alternatively be equated
to the sum of the first three segments of curve D1.

the individual doses will be the same. In

that case the cumulative response during the

interval from the n-th to the (n + 1)-th

dose is equal to the sum of the first n seg-

ments, superimposed one upon another, of

the response to a single dose (cf. figs. 11,

12). If this sum converges as n -#{247} �, then it

can be concluded that the system approaches

asymptotic drug levels on repetitive drug
administration, which levels are given by

the limit to which this sum converges.8

The asymptotic mean levels at the vari-

ous anatomical points of the system are

given by the integrals of the corresponding

drug levels over one dosage cycle, divided by

the cycle duration r. At any given anatomical

point in a linear system which is time-
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FIG. 12. On repetitive dosage in a linear, time-
invariant system, the integral of (area under)
the asymptotic cumulative response over one
dosage cycle equals the integral of (area under)
the response to a single dose from 0 to �. Curve S
is the response to a single dose; curve C is the
asymptotic cumulative response after a long
series of regularly-repeated doses. The dashed
lines show how the cumulative level would decay
if dosing were stopped at various times. In the time
interval from 0 to 1, the vertical distance between
the dashed line and curve C at any time is equal
to the height of curve �S. Similarly, in the time
interval from 1 to 2, the segment of curve C is
equal to the segment of the lowest dashed line
plus the first two segments of curve S. Equal

areas are indicated by similar crosshatching. The
area under curve C over one time unit is equal
to the sum of the “stacked” segments of the area
under curve S.

invariant or periodic with the same period

as the dosage cycle, the asymptotic drug
level during each cycle is the sum of all

successive segments of length r of the re-
sponse to a single dose; and therefore the
integral of the asymptotic drug level over

one cycle equals the integral of the drug
level after a single dose, from time t = 0

to � (cf. fig. 12). We, therefore, have

- ir
ya,=-I y&,

1� “0
(15)

where y is the response to a single dose, and

p� gives the asymptotic mean drug level

(or levels, if y and �a, are vectors) on re-

peated dosage at the interval r (cf. fig. 12).

b. Irreversthle Drug Actions. Jusko (18,
19) has developed a theoretical approach to

irreversible chemotherapeutic or teratogenic

agents. For a chemotherapeutic agent, Jusko

assumes that the rate of malignant cell

destruction is proportional to the number of

living cells and the local tissue drug con-

centration X�. The cells are also assumed

either to die spontaneously or to divide,

both processes taking place at overall rates

proportional to the number of cells. Letting

S� be the fraction of cells surviving after a

time t, Jusko has derived the equation

(slightly modified here)

log. S� = -k j X� d� + k9t. (16)

The term k9t reflects the net change due to

spontaneous cell death and division.

If the dose of chemotherapeutic agent is

finite (i.e., adminlstration is not continued

indefinitely), then one may reasonably as-

sume that X� rises to a maximum and de-

clines asymptotically to zero, and that for

some sufficiently large time T,

X,d� (17)

Jusko showed that for a two-compartment

open system the latter integral was directly

proportional to the dose D; and hence,

from equation (16), he arrived at the equa-

tion:

log. ST = -KID + k9T, (18)

where K. is a constant. For a fixed value of

T, this equation predicts a linear relation

between log. ST and the dose D, a relation

which can be tested experimentally.

As we have shown in this review, however,

a direct proportionality between the dose D

and the time-integral of tissue concentration

holds for any linear system. Furthermore,

it holds not only for a single dose but also

for any pattern of successive doses or infu-

sions, provided this pattern remains un-

changed except for a scale factor. It follows

that equation (18) is not tied to the two-
compartment model, or to single-dos drug
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Without this assumption one cannot infer equal receptor activation from equal responses (46)�
which is a necessary step in the derivation of equation (19).

administration, but holds for all linear phar-

macokinetic systems and for any fixed

pattern of drug administration.

c. Competitive Drug Antagonism. Ac-

cording to the most commonly-used theory

of competitive drug antagonism (1), the
ratio of equieffective concentrations of an

agonist A in the presence and absence of a
competitive antagonist B is given by

where KB is the drug-receptor dissociation

equilibrium constant for the antagonist B,

and [A] is the concentration of agonist which,

in the presence of an antagonist concentra-

tion [B], produces a biological response

exactly equal to that produced by the con-

centration [A]0 in the absence of antagonist.
Equation (19) can be applied readily to

isolated tissues where the known drug

concentrations in the bathing medium can

be assumed to prevail at the receptors after

diffusion equilibrium has been established,

but in intact animals the situation is con-

siderably more complicated. The drug
concentrations at the receptors are usually

not only unknown but also inconstant, ris-

ing to a maximum soon after injection of the

drug, and then faffing. Nevertheless, if the

system is pharmacokinetically linear, and

ifthe routes and schedule of drug administra-

tion are not changed, then the drug con-

centrations at the receptors are directly
proportional to the doses given; and if, at

any given time, all receptors can be as-

sumed to be exposed to the same concentra-

tion of drug A and to the same concentra-

tion of drug B,9 then the concentrations in

equation (19) can be replaced by the cor-

responding doses, and the equation will

still hold. Of course, KB will not then be a

true dissociation equilibrium constant, but

rather an empirical constant, with the same

units as the dose of B; and it will reflect

drug distribution as well as affinity for the

receptor. (The fact that the apparent KB

is influenced by drug distribution is im-

portant to keep in mind when evaluating

studies such as those undertaken to deter-

mine, by comparing KB values, whether

beta-adrenergic receptors in different organs

differ.)
This method of analysis is invalid if the

system is pharmacokinetically non-linear,

or if the receptors are distributed in two or
more pharmacokinetically different com-

(19) partments or in a pharmacokinetically non-

uniform region. The assumption of pharma-

cokinetic linearity is especially vulnerable

because the drug-receptor reaction itself in-

volves saturable receptor sites and there-

fore necessarily introduces non-linearity.

Moreover, competitive antagonism requires

that the degree of receptor site saturation

be high, and therefore the drug-receptor

interaction cannot be even approximately

linear. The validity of this approach to com-

petitive antagonism in two therefore rests

on the assumption that the number of

receptors is too small for the drug-receptor

reaction to affect significantly the kinetics

of the agonist and antagonist concentrations

in the receptor region. This assumption is

probably valid in many cases, but it is

probably not valid for low concentrations of

drugs with very high affinities for the re-

ceptor, such as atropine (46, 47).
The direct proportionality between the

dose and the drug concentration at the

receptors holds only if we always measure

the concentration at the same time-interval

after starting the administration of the

drug, and only if we use always the same

routes and schedule of drug administration,

changing only the dose. Strictly speaking,

therefore, the two drugs A and B must

always be administered in the same time..

relationship, and the response must be

measured at a fixed time-interval after

starting the drugs. These requirements can

often be relaxed somewhat, however; for if

the concentration of one of the drugs re-

mains reasonably constant for a prolonged
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interval, then the exact timing of its ad-

ministration becomes no longer important.

Also, if the antagonist concentration re-
mains constant, then one can simply record

peak responses to the agonist, since under

the assumptions already made the peak

response to the agonist will always follow

the injection of the drug by the same time-

interval.

d. Delayed-release Pharmaceu&al Formu-

lations. Delayed-release pharmaceutical for-

mulations may release drug at a rate which

is not a simple exponential, i.e., is not pro-

portional to the quantity of drug remaining
unreleased. However, the factor controlling

the rate of release is generally the time

elapsed, and not the quantity of drug re-

maining. For example, if one gives two such

timed-release capsules, the rate of release

will be at all times just twice the rate of

release from one capsule; but the rate of

release after half the drug has been released

from two capsules may not equal the initial

rate of release from a single capsule, though

the amount of drug remaining is the same.
In general, a timed-release preparation can

be regarded as providing a fixed time-

schedule of drug administration; and, as

with other inputs, the resulting drug levels

obey the principle of superposition if the

system is linear.

KrUger-Thiemer and Eriksen (24) have

proved for a one-compartment model of the

body that the response to a delayed-release

pharmaceutical preparation which released

part of its drug immediately was equal to

the sum of the responses to the rapidly-

released and slowly-released parts given

separately. Their laborious proof is unneces-

sary, however, for this conclusion is nothing

but a statement of the principle of super-

position, and it therefore holds not only for

their one-compartment model, but also for

all other linear models.

e. Steady-state Flur Across Linear Mem-

branes. Danielli (10) analyzed passive dif-

fusion across homogeneous membranes and

across membranes consisting, in effect, of a

succession of identical compartments.

Buerger (4) treated a more general type of

membrane, consisting of a more or less

arbitrary arrangement of compartments.

Here we shall consider a stifimore general

type of membrane, within which may occur

any of the types of pharmacokinetic process
mentioned above, and for which we shall

make only the assumptions that the system

is linear and that steady states exist for all

constant inputs under consideration.

For a membrane separating two phases

containing a diffusing substance at fixed

concentrations x1 and X2, respectively, the

steady-state concentration of the diffusing
substance at every point within the mem-
brane obeys the principle of superposition

with respect to the input {x1, x2}, if the

system is linear. Since all steady-state

effiux rates from points within the mem-

brane depend linearly either on the concen-

trations within the membrane or (e.g., in

discriminating systems) on the input con-
centrations themselves, they must also

obey the principle of superposition, as must

therefore the total effiux from the membrane

into, say, the first phase. Since the steady-

state influx into the membrane from the

first phase is directly proportional to x1, it

follows that the net steady-state flux from

the first phase into the membrane, which

equals the net steady-state flux across the

membrane, obeys the principle of superposi-

tion with respect to {x�, x21. When X2 = 0,
the net steady-state flux is therefore directly

proportional to x1, the proportionality

constant P21 being the effective permeability
coefficient for passage from the first to the
second phase; and when x1 = 0 the net

steady-state flux (in the reverse direction)

is P12X2, where P12 is the effective perme-
abffity coefficient for passage in the reverse
direction. In general, then, the net steady-
state flux from the first to the second phase

is given by

J24_1 = P21X1 - P12X2 (20)

If the standard free energies and the ac-

tivity coefficients of the diffusing substance

are the same in the two phases, and if there



LINEARITY AND SUPERPOSITION IN PHARMACOKINETICS 23

is no active transport, then P12 and P21 are

equal, and the net steady-state flux is di-

rectly proportional to the concentration

difference, with a single permeability co-

efficient.

It may be noted that no geometrical as-

sumptions have been made, so that what

we have called a “membrane” could be re-

placed by any linear system, even one which

had no physical resemblance whatever to a

true membrane (e.g., a succession of meta-

bolic transformations). The sole require-

ment for equation (20) is that the connection

between the two phases be a linear system.

3. Prediction of System Behavior

As Westlake (53) has emphasized, the

mere knowledge that a system is linear allows

one to make important practical predictions

about its behavior. It has already been indi-

cated above, for example (section 2 a, figs.
ii, 12), that the asymptotic drug levels on

continuous infusion or repetitive dosage in

a linear, time-invariant system can be pre-

dicted from the response to a single dose.

Again, if one has measured the plasma levels

in a linear system after an intravenous in-

jection, and also after an intramuscular

injection, then one can predict the responses

to various combinations of intravenous

and intramuscular doses by simply adding

the responses to the intravenous and intra-

muscular injections given separately, after

multiplying each by an appropriate dosage

factor (cf. fig. 13). A similar procedure gives

the response to the simultaneous oral ad-

ministration of a delayed-release preparation

and a standard preparation (cf. fig. 14), or

to the injection of an intravenous bolus fol-

lowed by a constant infusion.

4. Usefulness of Specific Models for Linear

Systems

The principle of superposition is so

powerful by itself that a question begins to

arise whether specific pharmacokinetic mod-

els have any value at all for linear systems.

In fact they do; and their value can be

measured by the predictions and insights

they provide that are not provided by the

principle of superposition alone. Examples of

such predictions or insights would include

extrapolation in time, results with different

routes of administration, and effects of model

parameter changes.
Extrapolation in time is always hazardous,

because in the course of time effects may

begin to appear which were not detected in

short-term experiments and which are there-

fore not provided for in the model used for

extrapolation. For example, the data of

Okita et al. (31) on digitoxin are well fitted

by a two-compartment model in which the

half-life of the slower exponential component

of plasma elimination is 45 to 50 hr. Since

the true biological half-life of this drug is

much longer, an incautious reliance upon

this model could have led to the use of

maintenance doses which, on prolonged

repetition, would have produced digitoxin

accumulation to toxic levels. Another exam-

ple has been given by Gibaldi and Wein-

traub (15). As emphasized by these authors

and others [e.g., Riggs (35)], the possibility

of a prolonged phase of slow elimination,

undetected in short-term experiments,

should be recognized as a serious limitation

on our ability to predict drug accumulation

levels from single-dose responses, whether

we base those predictions on a specific

pharmacokinetic model or simply on the

principle of superposition. The effect of

such a slow elimination process would be a

gradual upward drift in the accumulation

levels after a seemingly steady state#{149}had

been established. As a general rule, there-

fore, extrapolation in time should not be

relied on too heavily, and the stability of

drug accumulation levels on prolonged in-

fusion or repetitive administration should be

verified by direct observation.

With regard to changes in route of ad-

ministration or model parameters, on the�

other hand, it may be possible to establish

more satisfactorily the overall reliability of a.

model. Accumulated experience confirming

the validity of the model in a variety of

situations increases the confidence we can
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Fzo. 13. Application of the principle of superposition to determine an optimal combination of in-
travenous and intramuscular doses. The curve labeled “501V” (�) represents hypothetical data on
plasma levels of a hypothetical drug after an intravenous dose of 50 mg. (The initial value is estimated

by extrapolation, shown by the dashed line.) The curve labeled “1501M” (�) shows the “data” after an
intramuscular dose of 150 mg. The other three curves were calculated by the superposition principle,
and show the predicted responses to an intravenous dose of 50 mg, combined with intramuscular
doses of 50, 100, or 150 mg, respectively. If the objective is to maintain the plasma level between 1 and
2 ,.�g/ml, then the combination of 50 mg intravenously with 100 mg intramuscularly is the best of the
three combinations. Note that although the plasma level falls below therapeutic levels in less than
8 mm after the intravenous dose, there remains enough after 10 to 30 mm to produce “toxic” plasma
levels (over 2 pg/ml) when added to the levels produced by an ordinarily safe intramuscular dose. [The
“data” in figure 13 are actually based on the data of Rowland et at. (38) and Sloman et at. (42) on lido-
caine. For lidocaine, however, published observations on combined intravenous and intramuscular
administration (40) do not agree well with predictions based on superposition of responses to intravenous
and intramuscular doses given separately. Possibly the discrepancy is due to a difference in methods or
subjects. If not, it indicates that lidocaine pharmacokinetics are non-linear, despite the apparent
dose-independence noted by Rowland et at. (38). Some of the data (39, 40) suggest the possibility that
therapeutic plasma levels of lidocaine somehow slow its absorption from an intramuscular site; but
other data (2) indicate that plasma levels after intramuscular administration of different doses obey
the principle of superposition.]

place in its predictions for untried situa-

tions. For example, if a model is found to

fit the results of drug administration by two

or three different routes, this tends to in-

crease confidence in its predictions for still

other routes of administration; or if a model

is found to explain the pharmacokinetic

differences between drugs which differ in

such parameters as lipid solubility or bind-

ing affinity for plasma proteins, then con-

fidence in its predictions for untried drugs is

strengthened.

Specific pharmacokinetic models involve

much computational labor; they usually

oversimplify the actual system; they are
often impossible to verify in detail; their

parameters often cannot be accurately de-

termined from available data (35, 54); and
those parameters which can be determined

often cannot be reconciled with values

known from other experiments [e.g., body

compartment volumes (52)]. Despite these

difficulties, there are many examples (e.g.,

8, 21, 33) of the effective use of models in
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Fio. 14. Application of the principle of superposition to determine the optimal formulation of a
hypothetical delayed-release pharmaceutical preparation. The circles (#{149})and squares (u) represent
hypothetical plasma-level “data” on a standard drug preparation and a delayed-release preparation,
respectively. The latter releases drug molecules with a normal distribution of release times (mean
120 mm, standard deviation 60 mm, distribution truncated at 0 so that there are no negative release
times). The curves lying between the data points show the plasma-level responses to various combi-
nations of the standard and delayed-release preparation, as calculated by the principle of superposition.
The number at the left-hand end of each curve indicates the percentage of the delayed-release prepa-
ration in the combination. (The curves cross at about 177 mm, and lie in inverted order on the right-
hand side of the figure.) The optimal combination would appear to be one containing from 30 to 50%
of the delayed-release preparation, the exact percentage depending upon the particular criteria to be
met. Once the optimal proportions have been established, the total dosage can be adjusted by a scale
factor as necessary. Note that 1) costly clinical studies are kept to a minimum, in that only the two
pure preparations need be tested (in addition to final confirmatory studies on the mixture selected);
2) the mathematical complexities of the differential equations are entirely bypassed; 3) exactly the
same method is applicable to any linear system, no matter how complicated (e.g., a system with a fixed
time-delay in absorption); and 4) for any linear system the method is theoretically an exact one, not

an approximation.

explaining the effects of different routes of

administration and of different model param-

eter values. On the other hand, some models

seem to amount to little more than empirical

data-fitting; and for a system known to be

linear, such a model does not tell us any
more than we can infer from the principle of

superposition alone.

5. Non-linearity

it is unfortunately true that a great many

pharmacokinetic systems, perhaps the ma-

jority, are non-linear. This is because of

the very frequent occurrence in nature of

processes whose kinetics are not first-order.

Such processes include, as already men-

tioned, enzymatic transformations obeying

Michaelis-Menten kinetics, binding reac-

tions to limited numbers of binding sites on

plasma proteins or in tissues, and active

transport processes with limited available

carrier. Strictly speaking, the principle of

superposition does not hold for non-linear

systems; but it does not necessarily follow

that such systems are entirely beyond the

reach of broad general treatments such as

we have for linear systems. In the first place,

the departures of a non-linear system from

the principle of superposition may often be

small enough to be ignored. Secondly, even

when a system is non-linear from a con-

ventional viewpoint, it is sometimes possible

to formulate a particular superposition rule

which it obeys.



(22a)

(24)

and

dy2

= -ky2+z+x2,

respectively. Subtracting equation

from equation (22a) we obtain

d(y, - y�) - -k(y, - Y2)

dt -

+ (x, - x2).

10 The function z (or its components, if it is a vector function) may be either positive or negative.

However, if z is negative or has negative components then equation (21) cannot be assumed to hold
generally for a physical system, because under certain conditions it would lead to a physical impossi-

bility, namely negative mass. In such cases, therefore, equation (21) must be assumed to hold only
over certain restricted ranges of x and y.
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To illustrate some possible approaches to

non-linear systems, we consider a system

containing zero-order processes and obeying

= -ky + z + x,

where z is the rate of change of y due to

zero-order processes. The variables x, y, and

z may here be regarded as either ordinary

(scalar) functions of time or vector func-

tions of time.’#{176}Although equation (21) is

technically a linear differential equation,

the system is non-linear from our point of

view because it does not obey the principle

of superposition with respect to the input

= {x, y(0)}. There are, however, at least

three ways to derive a superposition rule for

this system.

The first method is to take the differences

between outputs. According to equation (21)

the outputs y’ and y2 for any two inputs

{x�, y,(0)} and {X2, y2(0)} are defined by

= -ky, + z + x,

Equation (23) has the same general form

as equation (1). This system therefore obeys

the principle of superposition with respect to

differences between inputs and differences

between outputs. Suppose, for example, one

had a series of responses Yi, � � y,,� to

inputs aiX, a2X, , a,,�x, respectively, with

Y1(#{176})= Y2(O) = ... = ym(O) = 0. If the
system obeyed equation (21) with z � 0
then it would not obey the principle of super-

position, i.e., the functions y,/a,, y2/a2, ..

(21) ym/am would not superimpose. However, one
could subtract the first response from all the

others, and the first input from all the

others, and in this way obtain a series

of curves (Y2 - y,)/(a2 - a,), (yz -

- �, , (Ym - y,)/(am - a,) which

would superimpose.

The second method is to observe the out-

puts with weighted sums of inputs. Unlike

the first method, this method requires plan-

ning the experiments in advance. If we add

equations (22a) and (22b) after first mul-

tiplying by the weighting factors a/(a + i3)

and 13/(a + 13), respectively, we obtain

d ay, + 13Y2 - -k ay, + $Y2

dt a+13 - _____

This equation is of the same form as equa-

tion (21); and it states, therefore, that if

y, and Y2 are the outputs for inputs

{x,, y,(0) } and {x2, y2(0) }, respectively,

(22b) then (ayi + 13y2)/(a + 13) is the output for

the input {(ax, + 13x2)/(a + 13), [ayi(0) +

(22b) $y2(O)]/(a + 13) }. This obviously can be

tested experimentally.

The third method works only for time-

invariant or periodic systems. We denote by

(23) y(t + r) a function whose value at time t

equals the value of y at some later time t + r,

where the interval �r is fixed; and, for the dis-

cussion of this method only, we use the no-

tation y(t) for y. We define k(t + r), k(t),

z(t + ‘r), etc., similarly. Then from equation

(21) we have

di = -k(t)y(t) + z(t) + x(t) (25a)



and

dy(t+ � = .k(g + r)y(t + r)

+ z(t + r) + x(t + r).

If k(t + r) = k(t) and z(t + r) = z(t) (i.e.,

if the system is time-invariant or periodic

with period r) then taking the difference

between equations (25a) and (25b) we have

+r) - y(t)}

= -k(t)[y(t + �r) - y(t)]

+ x(t + r) - x(t).

This equation is of the same general form

as equation (1), and therefore the system

obeys the principle of superposition with

respect to the output � = y(t + r) - y(t).

In practice, if one had a series of plasma

level curves y,, Y2, , Ym resulting from

inputs aix, � a,,�x, respectively,

with y,(0) = Y2(O) = ... = Ym(O) = 0, then

one could choose a suitable fixed time-in-

terval r and compute a series of differences

y(t + r) - y(t) at several t values for each

output curve. These computed differences

could then be divided by the dose and plotted

against t, and the curves of [yi(t + r) -

y,(t)]/a, , [y�(t + r) - y2(t)]/a, , . . .

[ym(t + r) - ym(t)]/am would superim-
pose.

Other non-linear systems may likewise

yield to some of these approaches. The

method of differences [equation (23)] seems

especially likely to be generally useful. For

example, for inputs {x� , y�(O)} which do not

differ too much from some standard input

{x,, y,(O) } the output differences y1 - yi

of a non-linear system may approximately

obey the principle of superposition with

respect to inputs defined as {[x� - x,],

[y�(O) - yi(O)]}. Another approach is to

set up a specific model for the non-linear

part of the system, leave the linear part

undefined, and try to derive some function

of the observed parameters which obeys the

principle of superposition without regard to
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the details of the linear part. An example of

this has been given elsewhere [46, equation

(25b) (11)]. Further theoretical studies may well

lead to new and better methods for the gen-

eral analysis of various types of non-linear

pharmacokinetic system.

General Conclusions

The analysis of pharmacokinetic systems

in terms of the general concept of linearity

allows us to see beyond particular kinetic

details and obtain a better insight into

overall system behavior. The habit of

thinking of system inputs and responses as

functions or sets rather than as simple

numbers, and the concept of addition of

such complicated inputs and responses,

greatly improve our conceptual framework

for dealing with various dosage schedules

and their combinations. Methods of analysis

based on linearity and superposition have

broad generality, and this generality may

often obviate some of the problems posed

by the complexity and variability of bio-

logical systems and the difficulty of experi-

mentally verifying pharmacokinetic models

and evaluating parameters.

From a few examples, one can easily ac-

quire a working intuitive grasp of the con-

concept of linearity; and with experience

one learns how to apply the concept to an

ever broader range of problems. An appre-

ciation of general system properties such as

linearity and time-invariance will encourage

an experimental scientist to test for such

properties; and then even though he may be

unwilling to tackle a full mathematical

pharmacokinetic analysis himself, he will

have obtained the experimental data which

another analyst will find essential. The

theorist, for his part, should recognize the

experimental manifestations of non-linearity,

so that he does not waste time trying to

contrive a linear model to fit non-linear

data.

Pharmacological theories based on par-

ticular pharmacokinetic models are subject

to doubt when those models are shown to
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be inapplicable. In many cases, however, a

theory can be based just as easily on the

simple assumption of linearity, with no

assumptions regarding pharmacokinetic de-

tails. A theory resting on this foundation

is much less vulnerable than one based on a

possibly erroneous specific pharmacokinetic

model.

Finally, even though the concept of

linearity is very broad and non-specific, it is

quite practical, because it provides a basis

for utilizing empirical data to make specific

practical predictions.

REFERENCES

1. ARVNLAE8HANA, 0. AND SCHILD, H. 0.: Some quantitative
uses of drug antagonists. Brit..7. Pharmacol. Chemother.

14: 48-58, 1959.

2. BaLLET, S., ROMAN, L., Kos’ris, J. B. AND FLRISCHMANN,
D.: Intramuscular lidocaine in the therapy of ventricular
arrhythmias. Amer. J. Cardiol. 27:291-293,1971.

3. Braxaorr, G. AND MACLANE, S.: A Survey of Modern Alge-

bra, 3rd ed.. The Macmillan Company, New York, 1965.
4. Buzaoza, A. A.: A theory of integumental penetration. .7.

Theor. Biol. 14: 66-73, 1967.
5. COHEN, E. N., CoaBs.scIo, A. AND FLEISCHLI, G.: The distri-

bution and fate of d-tubocurarine. J. Pharmaool. 147:
120-129, 1965.

6. Couji,z, L.: Functional Analysis and Numerical Mathe-
matics, Academic Press, New York, 1966.

7. Caairz, J.: The Mathematics of Diffusion, Oxford University

Press, London, 1956.

8. Clu.wroaD,J. S.: Speculation: the significance of varying
the mode of injection of a drug. Brit. J. Anaesth. 38: 628-

640, 1966.

9. CUMMINGS, A. J. AND MARTIN, B. K.: Interpretation of the

kinetics of salicylic acid elimination..7. Pharm. Sci. 57:

891-893, 1968.
10. DANIELLI, J. F.: The theory of penetration of a thin mem-

brane. In The Permeability of Natural Membranes,

by H. Davson and J. F. Danielli, pp. 341-352, The Mac-
millan Company, New York, 1943.

11. DAYTON, P. 0., CUCINELL, S. A., WEISS, M. AND PEaRL, 3.
M.: Dose-dependence of drug plasma level decline in dogs.

3. Pharmacol. Exp. Ther. 158: 305-316, 1967.

12. DISANTO, A. R. AND WAGNER,J. G.: Potential erroneous
assignment of nonlinear data to the classical linear two-

compartment open model. J. Pharm. Sci. 61: 552-555, 1972.
13. FIFE, D.: Which linear compartmental systems contain

traps? Math. Biosci. 14: 311-315, 1972.
14. GADDUM, J. H: Repeated doses of drugs. Nature (London)

153: 494, 1944.
15. GIBALDI, M. AND WEINTEAUB, H.: 5ome considerations as to

the determination and significance of biologic half-life. .7.

Pharm. Sci. 60: 624-626, 1971.
16. HEARON, J. z.: Theorems on linear systems. Ann. N. Y.

Acad. Sci. 108: 36-68, 1063.
17. JACQUEZ, J. A.: Compartmental Analysis in Biology and

Medicine, Elsevier Publishing Co., Amsterdam, 1972.

18. Jusxo, W. 3.: Pharmacodynamics of chemotherapeutic

effects: dose-time-response relationships for phase-non-
specific agents.J. Pharm. Sci. 60: 892-895, 1971.

19. Jusxo, W. J.: Pharmacodynamic principles in chemical

teratology: dose-effect relationships. J. Pharmacol. Eap.

Ther. 183: 469-480, 1972.
20. Jusxo, W. 3. AND Lavy, G.: Absorption, metabolism, and

excretion of ribofiavin-5’-phosphate in maul. Pharm. Sci.

56: 58-62, 1967.

21. KETY, S. 5.: The theory and applications of the exchange of

inert gases at the lungs and tissues. Pharmacol. Rev. 3:
1-41, 1951.

22. KROGER-THIZMEa, E.: Pharmacokinetics and dose-concen-

tration relationships. In Physico-Chemical Aspects of

Drug Action, ed by E. J. Ari#{235}ns,pp. 63-113, Pergamon
Press, Oxford, 1968.

23. KRUGER-THIEMEB, E.: Nonlinear dose-concentration rela-
tionships. Farmaco (Pavia) Ed. Sci. 23: 717-756, 1968.

24. KEOGER-THIEMER, E. a�co ERIK.SEN, S. P.: Mathematical

model of sustained-release preparations and its analysis. J.
Pharm. Sci. 55: 1249-1253, 1966.

25. LEVY, CL: Evidence for nonfirst-order kinetics of salicylate

elimination-a rebuttal. S. Pharm. Sci. 56: 1044-1046, 1967.
26. LEVY, 0.: Dose-dependent effects in pharmacokinetics. In

Importance of Fundamental Principles in Drug Evalua-

tion, ed by D. H. Tedeschi and R. E. Tedeschi, pp. 141-172,

Raven Press, New York. 1968.
27. LEVY, G., TsucrnYA, T. AND AMSEL, L. P.: Limited capacity

for salicyl phenolic glucuronide formation and its effect on
the kinetics of salicylate elimination in man. Clin. Pharma-

col. Thor. 13: 258-268, 1972.
28. MARGENAU, H. AND M��a�iiv, G. M.: The Mathematics of

Physics and Chemistry, D. Van Nostrand Company, Inc.,
Princeton, N. J., 1956.

29. MElEE, P. AND ZIERLER, K. L.: On the theory of the indi-

cator-dilution method for measurement of blood flow and
volume. J. Appl. Physiol. 6: 731-744, 1954.

30. NAGASBIMA, R., LEVY, G. AND O’REILLY, R. A.: Compara-

tive pharmacokinetics of coumarin anticoagulants. IV.
Application of a three-compartmental model to the analysis
of the dose-dependent kinetics of bishydroxycoumarin

elimination. S. Pharm. Sci. 57: 1888-1895, 1968.

31. ORITA, 0. T., TALSo, P. 5., CURRY, J. H., 5Mm!, F. D.
AND GEILING, E. M. K.: Blood level studies of C”-digi-

toxin in human subjects with cardiac failure. J. Pharma-

col. Exp. Ther. 113: 376-382, 1955.
32. PIoTEowsxI, J.: The Application of Metabolic and Excretion

Kinetics to Problems of Industrial Toxicology, U. S.
Government Printing Office, Washington, 1971.

33. PRICE, H. L., KOVNAT, P. J., SAFER, S. N., CONNER, E. H.

AND PRICE, M. L.: The uptake of thiopentalby body tissues

and its relation to the duration of narcosis. Clin. Pharma-

col. Thor. 1:16-22, 1960.
34. RESCIGNO, A. AND SEGRE, G.: Drug and Tracer Kinetics.

Blaisdell Publishing Company, Waltham, 1966.
35. RIGGS, D. S.: The Mathematical Approach to Physiological

Problems, The Williams & Wilkins Company, Baltimore,
1963.

36. Rossimc, J. M. VAN: Pharmacokinetics of accumulation. J.

Pharm. Sci. 57: 2162-2164, 1968.
37. Rossuac, J. M. VAN AND TOMEY, A. H. J. M.: Multicompart-

ment-kinetics and the accumulation plateau. Arch. mt.
Pharmacodyn. Ther. 188: 200-203, 1970.

38. Rown.aan, M., THOMSON, P. D., GUICRARD, A. AND MELMON,
K. L.: Disposition kinetics of lidocaine in normal subjects.

Ann. N. Y. Aced. Sci. 179: 383-398, 1971.
39. Scovr, D. B., JEB5ON, P. J., VELLANI, C. W. AND JULIAN,

D. G.: Plasma-levels of lignocaine after intramuscular in-
jection. Lancet 2: 1209-1210, 1968.

40. Scorr, D. B., SEasON, P. .7., VELLANI, C. W. AND JULIAN.

D. 0.: Plasma-lignocaine levels after intravenous and

intramuscular injection. Lancet 1: 41, 1970.

41. SEARLE, S. R.: Matrix Algebra for the Biological Sciences,

John Wiley & Sons, Inc., New York, 1966.
42. SLOMAN, 0., ISAAC, P., MURTON, L. AND HARPER, R.:

Plasma levels of lignocaine after intramuscular injection.
Med. S. Aust. 2: 655-657, 1971.

43. STEPHENSON, S. L.: Theory of the measurement of blood

flow by the dilution of an indicator. Bull. Math. Biophys.

10: 117-121, 1948.

44. TEORELL, T.: Kinetics of distribution of substances ad-

ministered to the body. II. The intravascular modes of

administration. Arch. mt. Pharinacodyn. Th#{233}r.57:225-240.

1937.



45. Tuuaow, C. D.: Structure and kinetic behavior of linear mul-

tioompartment systems. Bull. Math. Biophys. 34: 277-291,

1972.
46. TNEoN, C. D.: Nonlinear kinetics of atropine action on the

pacemaker of the isolated guinea-pig atrium. J. Pharmacol.

Exp. Thor. 181: 529-537, 1972.

47. THRON, C. D. AND WAUD, D. R.: The rate of action of atro-

pine. J. Pharmacol. Exp. Ther. 160:91-105. 1968.

48. WAGNER, J. 0.: Fallacy in concluding there are zero-order

kinetics from blood level and urinary excretion data. J.
Pharm. Sci. 56: 586-594, 1967.

49. WAGNER, J. 0.: Biopharmaceutics and ReleVant Pharmaco�

kinetics, Drug Intelligence Publications, Hamilton, Ill,

1971.

50. WAGNER, S. G.: Notes supplied for a pharmacokinetic

seminar sponsored by S. M. Richards Laboratory and held
at Northland Inn, Southfield, Mich., June 19-21,1972.

51. WAGNER. J. G., NoRTH.&M, J. I., AI�wAY, C. D. a.an CAR-
PENTER, 0. S.: Blood levels of drug at the equilibrium

state after multiple dosing. Nature (London) 207: 1301-

1302, 1965.

52. WATERHOUsE, C. AND KEIL8ON, S.: Transfer times across the

human body. Bull. Math. Biophys. 34: 33-44, 1972.
53. W�&rz.axz, W. S.: Problems associated with analysis of

pharinacokinetic models. S. Pharin. Sci. 60: 883-885, 1971.
54. Wa,ri.axz, W. J.: Use of statistical methods in evaluation

of in rivo performance of dosage forms. S. Pharm. Sci. 62:
1579-1588, 1973.

55. WIDMARK, E. M. P.: Studies in the concentration of indif-

ferent narcotics in blood and tissues. Acta Med. Scand.

52: 87-164, 1919.

56. ZAJ)RE, L. A. AND DEsOER, C. A.: Linear System Theory,

McGraw-Hill Book Company, New York, 1963.

means

(A8)

rci
rc = Enu r’2 null �

Lcs

LINEARITY AND SUPERPOSITION IN PHARMACOKJNETICS 29

(AlO)

Appendix

1. Matrices. A matrix is a rectangular array of

numbers or other elements, e.g.,

r-� 31
I 0 51,1 a bx+c
L 2 2J � h

When it is desired to refer to the individual ele-
ments of a matrix, these are usually identified by
doubly-subscripted letters, the subscripts de-
noting the row and column, respectively:

raii ai,1

a� a� �. (A2)
Lazi anJ

The entire matrix may be denoted by a single
letter, as

raii
a=Ian a�

Lasi a�

The use of bold-face type for letters denoting
matrices is a common but not universal practice.

A vector is a matrix with only a single row (row
vector) or column (column vector), e.g.,

rcil
En n, r, r4], C, �. (A4)

LCaJ

As illustrated, only one subscript is necessary for
the elements of a vector.

Two matrices are 8ald to be equal if and only if
they have the same number of rows, they have the
same number of columns, and all corresponding
elements are equal. For example:

r a11 a1, a1�l rb1, b1,

Lan an �J’L� b,, b,j (A5

au = b1, , au = b15 , a1� = b,,

= b,1 , � = b,, , a,1 =

(A6)

The matrices in equation (A5) can be denoted by
single letters a and b respectively, and the equa-
tion can then be written as

a=b. (A7)

Equation (A7) is equivalent to the six equations
(A6), and illustrates the simplification of notation
achieved with matrices.

The sum of two matrices can be formed if and
only if they have the same number of rows and
they have the same number of columns. Their
sum is a third matrix with the same number of
rows and the same number of columns, in which
each element is the sum of the corresponding
elements of the two matrices being added. For
example:

(Al) r-’ �1 r� 0
I 0 51+1 0 z’
L 2 2J L-p -2

r3 3
1 0 5+z’
L2-p 0

With single-letter symbols for the matrices, equa-

tion (A8) might be written

a+b=c. (A9)

The matrix equation (A9) is then the equivalent
of six simple algebraic or arithmetical equations
expressing the addition of the individual matrix

elements.
(A3) The product of two matrices can be formed if

and only if the first has exactly as many columns
as the second has rows. Consider first the so-called
inner product of two vectors, the first a row vector
and the second a column vector. This is defined as

the sum of the products of corresponding elements.
For examp’ e:



d(ay) dy
-�--=aj-. (A15)

An important set of general algebraic laws which
can readily be shown to hold for matrix addition

and multiplication are the distributive laws.
These may be stated as follows for any matrices

a, b and c such that a can multiply b and c, and b
and c can be added, and for any two numbers

a and $:

a(b + c) = ab + ac, (A16a)

a(b + c) = ab + ac, (A16b)

and

(a + $)b = ab + $b. (A16c)

(All)

More on matrix algebra can be found in various

texts (e.g., 28, 41).
�. Multicompartment systems (16; 17, pp. 48ff.;

45; 46). We consider a system of n compartments,
in which a substance is distributed. We assume
that all transfers of the substance out of com-
partments (whether to other compartments, to

the outside world, or to oblivion) obey first-order
kinetics. Let y� equal the quantity of substance
in the i-th compartment, and let k,� be the first-

order rate constant for transfer from the i-th

to the j-th compartment, so that the rate of (uni-
directional) transfer from the i-th to the j-th
compartment is � Let everything outside the

(A12) compartment system be taken as the 0-th com-
partment, so that k0� is the rate constant for elimi-
nation from the i-th compartment. Let x� be
the rate of injection into the i-th compartment.

Then the rate of change of the quantity in the
i-th compartment is given by

(A13)

= k�, y - (�‘ k1�) y1 + x,, (A17)

where the primed summation sign indicates a sum-

mation from which the term with j = i is omitted.
An equation of this form holds for each compart-

ment (i = 1, 2, ... , n). These n equations may be
written out as follows:

= _(�‘ k1) Yi + k12y,

+‘“±k15y�+x1,

dy2 /A
k�yu�� k3�,,jy�

+ “ + � + x2, (A18)
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= rucu + n,c, + � and also that, for any number a,

The sum on the right-hand side, containing the
products of corresponding terms of the two vec-
tors, is a number, not a matrix; therefore the inner
product of two vectors is a number, not a matrix.

For matrices other than vectors, the rule for

multiplication isas follows: the element in the i-th

row and the j-th column of the product is the inner
product of two vectors, namely the i-th row of the

first matrix and the j-th column of the second.
For example,

raii au:1 rb11b1,
ab=ia� anII

Lasi anJLb�u b�

raii b11 + a1� b� an b1, + a1,

=1 a,�b11+a,,b,� anbi,+anb,, I.
Lasubn + a�b� a,1b1, + as,bnJ

The product has as many rows as the first matrix
and as many columns as the second.

Note that matrix multiplication is not always

commutative, i.e., ab may not equal ba. In fact, in

the example of equation (All) the product ba
cannot be formed at all, because b has fewer

columns than a has rows.
Multiplication of a matrix by a number multi-

plies every element of the matrix by that number,

e.g.,

r Uii a,,
aa = a I

Lan an an

r
Laa,i aan aa,j

This operation is commutative, i.e., aa = aa.
A vector or matrix whose elements are functions

of time is sometimes referred to as a vector or
matrix function of time. Differentiation of a vector

or matrix function of time is equivalent to dif-
ferentiation of each of its elements individually,
e.g.,

dy1

dt

dy d dy,

dy,

dt

One can easily verify from this definition that the
derivative of a sum of vector or matrix functions
of time is the sum of the derivatives, i.e.,

d(x±y) dx dy

dt dt+dt�



dy� = ky + k�,y,

y,

x +

dy5

dt

-(i’ k11� y, + k1, Yz + + k15 Ye + xi
\j�O /

k,uyu (1’k12)Y1+

_(E’k1�)Y5+x�

(A19)

By the rules of matrix algebra, equation (A19) is
equivalent to

1/i

d

=

-k1, �.. -k,� 1
-�k� (�‘k12) ...

(� k��)
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-/c5� -Ic5,
when these equations are matrix equations.

+ ... - (�‘ k1��) Ye + X�.

These equations can be written in matrix form as
follows:

dyi

dt

dy,

This can be seen as follows. If we find the inner

product of the first row of the first matrix on the

right-hand side of equation (A20) with the column
vector of the y� , we obtain the sum (�i’0 k51)yi -

- ... -k1,,y5. The (-) sign preceding the

matrix in equation (A20) then changes the signs of
all the terms of this sum. Continuing in this way,

we find that the result of multiplying out the

first two matrices on the right-hand side of equa-

tion (A20) is a column vector of algebraic ex-
pressions which are identical to the first n terms
of the expressions in the right-hand matrix of

equation (A19). Addition of the corresponding

elements of the column vector of the x� in equa-

tion (A20) then gives a column vector of algebraic

expressions identical to the right-hand side of

equation (A19).
Equation (A20) can now be written with single-

letter symbols y, k, and x for the matrices, as

follows:

�=-ky+x. (A21)

This equation is formally identical to equation

(1). The laws of matrix differentiation, addition

and multiplication, as expressed in equations

(Al2-Al6), then validate the derivation of equa-

tion (4) from equations (3a) and (3b) for the case




